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Abstract

Currently, the most successful learning models in com-
puter vision are based on learning successive representa-
tions followed by a decision layer. This is usually actual-
ized through feedforward multilayer neural networks, e.g.
ConvNets, where each layer forms one of such successive
representations. However, an alternative that can achieve
the same goal is a feedback based approach in which the
representation is formed in an iterative manner based on a
feedback received from previous iteration’s output.

We establish that a feedback based approach has several
core advantages over feedforward: it enables making early
predictions at the query time, its output naturally conforms
to a hierarchical structure in the label space (e.g. a taxon-
omy), and it provides a new basis for Curriculum Learning.
We observe that feedback develops a considerably differ-
ent representation compared to feedforward counterparts,
in line with the aforementioned advantages. We present a
general feedback based learning architecture, instantiated
using existing RNNs, with the endpoint results on par or
better than current feedforward networks and the addition
of the above advantages.

1. Introduction

Feedback is defined to occur when the (full or partial)
output of a system is routed back into the input as part of
an iterative cause-and-effect process [13]. Utilizing feed-
back is a strong way of making predictions in various fields,
ranging from control theory to psychology [34, 44, 2]. Em-
ploying feedback connections is also heavily exercised by
the brain suggesting a core role for it in complex cogni-
tion [22, 47, 47, 8, 35]. In this paper, we show that a feed-
back based learning approach has several advantages over
the commonly employed feedforward paradigm making it
a worthwhile alternative. These advantages (elaborated be-
low) are mainly attributed to the fact that the final prediction
is made in an iterative, rather than one-time, manner along
with an explicit notion of the thus-far output per iteration.
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Figure 1. A feedback based learning model. The basic idea is to make
predictions in an iterative manner based on a notion of the thus-far out-
come. This provides several core advantages: I. enabling early predictions
(given total inference time T , early predictions are made in fractions of T );
II. naturally conforming to a taxonomy in the output space; and III. better
grounds for curriculum learning.

Early Predictions: One advantage is providing estima-
tions of the output in a fraction of the total inference time.
This is schematically illustrated in Fig. 1. This property is a
result of iterative inference and is in contrast to feedforward
where a one-time output is provided only when the signal
reaches the end of the network. This is of particular impor-
tance in practical scenarios, such as robotics or autonomous
driving; e.g. imagine a self driving car that receives a cau-
tionary heads up about possibly approaching a pedestrian on
a highway, without needing to wait for the final definite out-
put. Such scenarios are abundant in practice as usually time
is crucial and limited computation resources can be reallo-
cated based on early predictions on-the-fly, given a proper
uncertainty measure, such as Minimum Bayes Risk [33].

Taxonomy Compliance: Another advantage is making
predictions that naturally conform to a hierarchical struc-
ture in the output space, e.g. a taxonomy, even when not
trained using the taxonomy. The early predictions of the
feedback model conform to a coarse classification, while
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the later iterations further decompose the coarse class into
�ner classes. This is illustrated in Fig.1. This is again due
to the fact that the predictions happen in an iterative manner
coupled with acoarse-to-�ne representation. The coarse-
to-�ne representation is naturally developed as the network
is forced to make a prediction as early as the �rst iteration
and iteratively improve it in all following iterations.

Episodic Curriculum Learning: The previous advan-
tage is closely related to the concept of Curriculum Learn-
ing [4], where gradually increasing the complexity of the
task leads to a better training [12, 4, 32]. For non-convex
training criteria (such as in ConvNets), a curriculum is
known to assist with �nding better minima; in convex cases,
it improves the convergence speed [4].

As prediction in a feedforward network happens in a
one-time manner, a curriculum has to be enforced through
feeding the training data in an order based on complexity
(i.e. �rst epochs formed of easy examples and later the hard
ones). In contrast, the predictions in a feedback model are
made in an iterative form, and this enables enforcing a cur-
riculum through the episodes of prediction for one query.
We call thisEpisodic Curriculum Learning. In other words,
sequential easy-to-hard decisions can be enforced for one
datapoint (e.g. training the early episodes to predict the
species and the later episodes the particular breed). Hence,
any taxonomy can be used as a curriculum strategy.

In our model, we de�ne feedback based prediction as
a recurrent (weight) shared operation, where at each itera-
tion the output is estimated and passed onto the next itera-
tion through a hidden state. The next iteration then makes
an updated prediction using the shared operation and re-
ceived hidden state. It is crucial for the hidden state to
carry a direct notion of output, otherwise the entire sys-
tem would be a feedforward pass realized through a re-
current operation [37]. Therefore, we train the network to
make a prediction at each iteration by backpropagating the
loss in all iterations. We present a generic architecture for
such networks, instantiated simply using existing RNNs,
and empirically prove the aforementioned advantages on
various datasets. Though we show that the feedback ap-
proach achieves competent �nal results, the primary goal
of this paper is to establish the aforementioned conceptual
properties, rather than optimizing for endpoint performance
on any benchmark. The developed architectures and pre-
trained models are available athttp://feedbacknet.
stanford.edu/ .

2. Related Work

There is a notable amount of prior research in machine
learning [58, 45, 56, 43, 59, 16, 17, 61, 51, 15, 5, 50]
and neuroscience [14, 25, 64] that have commonalities
with feedback based learning. We provide a categorized
overview of some of the most related works.

Conventional feedforward networks, e.g. AlexNet [31],

do not employ recurrence or feedback mechanisms. A
number of recent successful methods used recurrence-
inspired mechanisms in feedforward models. An example
is ResNet [19], introducing parallel residual connections,
as well as hypernetworks [18], highway networks [53],
stochastic depth [24], RCNN [37], GoogLeNet [55]. These
methods are still feedforward as iterative injection of the
thus-far output into the system is essential for forming a
proper feedback. We empirically show that this require-
ment, besides recurrence, is indeed critical (Table 4).

Several recent methods explicitly employed feedback
connections [7, 3, 66, 36, 38, 27] with promising results
for their task of interest. The majority of these methods are
either task speci�c and/or model temporal problems. Here
we put forth and investigate the core advantages of a gen-
eral feedback based inference. We should also emphasize
that feedback in our model is always in the hidden space.
This allows us to develop generic feedback based architec-
tures without the requirement of task-speci�c error-to-input
functions [7] (See supplementary material (Sec. 2) for more
discussions). Stacked inference methods are also another
group of related works [63, 62, 58, 57, 46]. Unlike the
method studied here, many of them treat their outputs in
isolation and/or do no employ weight sharing.

Another family of methods use feedback like mecha-
nisms for spatial attention [67, 6, 41, 41, 60, 54]. This is
usually used for better modeling of long term dependencies,
computational ef�ciency, and spatial localization. Lastly, it
is worth noting that Curriculum Learning [12, 32, 4] and
making predictions on a taxonomy [23, 52, 9, 11, 28] are
well investigated in the literature, though none provided a
feedback based approach which is our focus.

3. Feedback Networks

Feedback based prediction has two requirements: (1)
iterativeness and (2) rerouting a notion of posterior (out-
put) back into the system in each iteration. We instantiate
this by adopting a convolutional recurrent neural network
model and connecting the loss to each iteration. The over-
all process can be summarized as: the image undergoes a
shared convolutional operation repeatedly and a prediction
is made at each time; the recurrent convolutional operations
are trained to produce the best output at each iteration given
a hidden state that carries a direct notation of thus-far out-
put. This is depicted in Fig. 2.

3.1. Convolutional LSTM Formulation

In this section, we share the details of our feedback
model which is based on stacking a �exible variant of Con-
vLSTM [66] modules that essentially replace the operations
in an LSTM [21] cell with convolutional structures1. An
LSTM cell uses hidden states to pass information through

1See supplementary material (Sec. 7) for a discussion on alternatives to
LSTM for this purpose, including GRU, vanilla RNN, and ablated LSTM.

http://feedbacknet.stanford.edu/
http://feedbacknet.stanford.edu/


Figure 2.Illustration of our core feedback model and skip connec-
tions (shown in red) when unrolled in time.`ConvLSTM' and `L' boxes
represent convolutional operations and iteration losses, respectively.

iterations. We brie�y describe the connections between
stacked ConvLSTMs and the gates in them:

We parametrize the temporal order (i.e. iterations) with
time t = 0 ; 1; :::; T and spatial order of a ConvLSTM mod-
ule in the stack with depthd = 0 ; 1; :::; D . At depthd and
time t, the output of a ConvLSTM module is based on spa-
tial input (X d� 1

t ), temporal hidden state input (H d
t � 1), and

temporal cell gate input (Cd
t � 1).

To compute the output of a ConvLSTM module, the in-
put gatei d

t and forget gatef d
t are used to control the infor-

mation passing between hidden states:

i d
t = � (Wd;xi (X d� 1

t ) + Wd;hi (H d
t � 1)) ;

f d
t = � (Wd;xf (X d� 1

t ) + Wd;hf (H d
t � 1)) ;

(1)

where� is sigmoid function. W is a set of feedforward
convolutional operations applied toX and H . Here
W is parametrized byd but not t since the weights of
convolutional �lters are shared in the temporal dimension.
The architecture ofW is a design choice and is the primary
difference between our ConvLSTM module and Xingjian
et al. [66] as we use multilayer convolutional operations
for W with �exibility of including residual connections.
The depth ofW (i.e. the physical depth of a ConvLSTM
module) is discussed in Sec. 3.2.

The cell gateCd
t is computed as follows:

~Cd
t = tanh(Wd;xc (X d� 1

t ) + Wd;hc (H d
t � 1)) ;

Cd
t = f d

t � Cd
t � 1 + i d

t � ~Cd
t :

(2)

Finally, the hidden stateH d
t and outputX d

t are updated ac-
cording to the output stateot and cell stateCd

t :

od
t = � (Wd;xo (X d� 1

t ) + Wd;ho (H d
t � 1)) ;

H d
t = od

t � tanh(Cd
t );

X d
t = H d

t ;

(3)

where �̀ ' denotes the Hadamard product. Also, we apply
batch normalization [26] to each convolutional operation.

For every iteration, loss is connected to the output of the
last ConvLSTM module in physical depth. Here, the post

processes of ConvLSTM module's output (pooling, fully
connected layer, etc.) are ignored for sake of simplicity.
L t is the cross entropy loss at timet, while C denotes the
correct target class number andL is the overall loss:

L =
TX

t =1


 t L t ; whereL t = � log
eH D

t [C ]

P
j eH D

t [j ]
: (4)


 is a constant discount factor determining the worth of
early vs later predictions; we set
 = 1 in our experiments
which gives equal worth to all iterations.2

Connecting the loss to all iterations forces the network
to attempt the entire task at each iteration and pass the
output via the proxy of hidden state (Eq. 4) to future it-
erations. Thus, the network cannot adopt a representation
scheme like feedforward networks that go from low-level
(e.g. edges) to high-level representations as merely low-
level representations would not be suf�cient for accom-
plishing the whole classi�cation task in early iterations.
Instead, the network forms a representation across itera-
tions in a coarse-to-�ne manner (further discussed in sec-
tions 4.2.2, 4.2.3, and supplementary material's Sec. 3).

We initialize all X 0
t as the inout imageinp, and all

H d
0 as 0, i.e. 8t 2 f 1; 2; � � � ; Tg : X 0

t := inp and
8d 2 f 1; 2; � � � ; Dg : H d

0 := 0 . The operation of the Con-
vLSTM module above can be referred to using the simpli-
�ed notationF(X d� 1

t ; H d
t � 1).

3.2. Feedback Module Length

We can stack multiple ConvLSTM modules, each a dif-
ferent number of feedforward layers. We categorize feed-
back networks according to the number of feedforward lay-
ers (Conv + BN) within one ConvLSTM module, i.e. the
local length of feedback. This is shown in Fig. 3 where
the models are named Stack-1, Stack-2, and Stack-All. For
Stack-i , i feedforward layers are stacked within one ConvL-
STM module. This essentially determines how distributed
the propagation of hidden state throughout the network
should be (e.g. for the physical depthD, Stack-All architec-
ture would have one hidden state while Stack-1 would have
D hidden states). See supplementary material (Sec. 2) for
more discussions. Which lengthi to pick is a design choice;
we provide an empirical study on this in Sec. 4.2.1.

3.3. Temporal Skip Connection

In order to regulate the �ow of signal through the net-
work, we include identity skip connections. This was in-

2 Predicting the `absolute output' vs an `adjustment' value: In this
formulation, the absolute output is predicted at each iteration. An alterna-
tive would be to predict an `adjustment value' at each iteration that, when
summed with previous iteration's output, would yield the updated absolute
output. This approach would have the disadvantage of being applicable to
only output spaces with a numerical structure, e.g. regression problems.
Problems without a numerical, e.g. classi�cation, or structured space can-
not not be solved using this approach.



Figure 3.Feedback networks with different feedback module (ConvL-
STM) lengths. Left, middle, and right show Stack-1, Stack-2, and Stack-
All, respectively.

spired by conceptually similar mechanisms, such as the
residual connection of ResNet [19] and the recurrent skip
coef�cients in [69]. The skip connections adopted in the
feedback model can be formulated as: with the new input
at time t being X̂ d

t = X d
t + H d

t � n , the �nal representa-

tion will be F(X̂ d
t ; H d

t � n ; H d
t � 1), wheren is the skip length.

The skip connections are shown in Fig.2 denoted by the red
dashed lines. We setn = 2 in our experiments.

Besides regulating the �ow, Table 1 quanti�es the end-
point performance improvement made by such skip con-
nections on CIFAR100 [30] using Stack-2 architecture with
physical depth 4 and 8 iterations.

Feedback Net Top1 Top5
w/o skip connections 67.37 89.97
w/ skip connections 67.83 90.12

Table 1.Impact of skip connections in time on CIFAR100 [30]

3.4. Taxonomic Prediction
It is of particular practical value if the predictions of a

model conform to a taxonomy. That is, making a correct
coarse prediction about a query, if a correct �ne prediction
cannot be made. Given a taxonomy on the labels (e.g. Im-
ageNet or CIFAR100 taxonomies), we can examine a net-
work's capacity in making taxonomic predictions based on
the �ne class's Softmax distribution. The probability of a
query belonging to the �ne classyi is de�ned in Softmax
as P(yi jx; W ) = ef y i

P
j ef j

for a network with weightsW .

The probability of a query belonging to thekth higher level
coarse classYk consisting off y1; y2; :::; yn g is thus the sum
of probability of the query being in each of the �ne classes:

P(Yk jx; W ) =
X

i 2 1:n

P(yi jx; W ) =

P
i 2 1:n ef y i

P
j ef j

: (5)

Therefore, we use a mapping matrixM , whereM (i; k ) = 1
if yi 2 Yk , to transform �ne class distribution to coarse

Figure 4.Computation graph of Feedback vs Feedforward.X j
i de-

notes the representation at temporal iterationi and physical depthj . Skip
connections are not shown for simplicity.

class distribution. This also gives us the loss for coarse
predictionL Coarse , and thus, a coarse predictionpc is ob-
tained through the �ne predictionpf . In Sec. 4.2.3, it will
be shown that the outputs of the feedback network conform
to a taxonomy especially in early predictions.

3.5. Episodic Curriculum Learning

As discussed in Sec. 1, the feedback network provides a
new way for enforcing a curriculum in learning and enables
using a taxonomy as a curriculum strategy. We adopt an
iteration-varying loss to enforce the curriculum. We use an
annealed loss function at each time step of ourk-iteration
feedback network, where the relationship of coarse class
lossesL Coarse

t and �ne class lossesL F ine
t parametrized by

time t is formulated as:

L (t) = �L Coarset
t + (1 � � )L F ine

t ; (6)

where � is the weights that balance the contribution of
coarse and �ne losses. We adopt a linear decay as� = t

k ,
wheret = 0 ; 1; :::; k, andk is the end iteration of decaying.

For object classi�cation, the time varying loss function
encourages the network to recognize objects in a �rst coarse
then �ne manner, i.e. the network learns from the root of an
taxonomy tree to its leaves. In Sec. 4.2.4, it will be empir-
ically shown that the feedback based approach well utilizes
this curriculum strategy.

3.6. Computation Graph Analysis

Under proper hardware, feedback model also has an ad-
vantage on speed over feedforward. This is because a feed-
back network is a better �t for parallelism compared to
feedforward due to having a shallower computation graph
(shown in Fig. 4). In the interest of space, we give the full
discussion and derivation of the computation graphs in sup-
plementary material (Sec. 4) and only compare their depths
here. The computation graph depth of feedforward model
with depthD and that of feedback model with same vir-
tual depth (consisting ofm temporal iterations and physi-
cal depthn, D = m � n, and Stack-1 con�guration) are
df f = D � 1 = mn � 1 anddfb = m + n � 1, respectilvey.


