
Feedback Networks
Supplementary Material

http://feedbacknet.stanford.edu/

Abstract

The following items are provided in the supplementary
material:
1. A video clip describing the process.
2. Discussions on feedback via hidden state.
3. ‘Feedback’ vs ‘Recurrent Feedforward’.
4. Computational Efficiency Analysis.
5. The Coarse-to-fine representation:

5.1. Timed-tSNE details.
5.2. Activation Maps of Feedback vs Feedforward.

6. Physical vs Virtual Depth.
7. Recurrent module choice: LSTM, GRU, RNN.
8. Stanford Cars dataset experimental details and analysis.
9. MPII dataset experimental details and analysis.

1. Video Clip
We provide a video clip in the supplementary material

describing the pivotal aspects of the paper. To facilitate
understanding the paper, we encourage watching the video
available at https://youtu.be/MY5Uhv38Ttg.

2. Feedback via Hidden State
Feedback model predicts the output at each iteration and

passes it to the next iteration. The common formulation of
feedback is to explicitly feed back the thus-far output as part
of next iteration’s input (fig. 1, a). However, in our model,
we pass this information via the hidden state that carries a
direct notation of output rather than the explicit output; the
output can be computed given the hidden state, using Eq. 4
of the main paper. This approach is illustrated in fig. 1, b,
where fi and fo are learned functions relating the input i and
output o to the hidden state.

Passing the output via a hidden state has two main ad-
vantages: first, as the input (e.g. images) and output (e.g.
classes) belong to difference spaces, it enables developing
generic feedback architectures without needing to design
task-specific output-to-input functions [3]. Second, it brings
further flexibility on the architecture and allows distributing
the passed hidden states across different physical depths. In

fii f3+f2+f1+ ofo

fii f+ ofo

i f+ o

(a) Feedback via observed state

(b) Feedback via hidden state
(Non-distributed. Stack-All)

(c) Feedback via hidden state
(Distributed. Stack-3)

Figure 1. Feedback in observed vs hidden state. (a) The conventional
feedback formulation, where the observed output is fed back in the input.
(b) Feedback via the hidden state. No distribution of hidden state happens
in this configuration (Stack-All architecture). (c) Feedback via the hidden
state, where the hidden states are distributed (Stack-n architecture.)

other words, there does not have to be a single hidden state
relating the input to the output, and instead, there can be
multiple hidden states each curated for a certain physical
depth (i.e. Stack-All vs Stack-n architectures. See Table 2
of the main paper). This is shown in fig. 1, b and c.

However, it is not merely the recurrent structure that cre-
ates the feedback mechanism. In the next section, we show
the conventional recurrent networks are mostly indeed feed-
forward and how our feedback model performs something
rather different.

3. ‘Feedback’ vs ‘Recurrent Feedforward’

As explained in Sec. 3 of the main paper, feedback has
two main requirements: 1) recurrence, and 2) rerouting a
notion of posterior (output) into the system in each itera-
tion. Employing a recurrent method for learning without

1

http://feedbacknet.stanford.edu/
https://youtu.be/MY5Uhv38Ttg
https://youtu.be/MY5Uhv38Ttg

Recurrent
Feedforward

Feedback

LLL L

Figure 2. Different ways of connecting the loss to a recurrent net-
work, leading to instantiating a ‘Feedback’ or ‘Recurrent Feedfor-
ward’ model.

fulfilling the second requirement leads to a ‘recurrent feed-
forward’ model [5]. Architecturally, the primary difference
between feedback and recurrent feedforward is how the loss
is connected. Fig. 2-right corresponds to the recurrent feed-
forward architecture where the loss is connected to the last
iteration only. In this setting, the training phase is indeed
a shared-weights feedforward operation when rolled out in
time. As this model is only required to make one final pre-
diction, it has the leisure to form the representation in a
manner similar to feedforward but through the recurrent it-
erations, rather than physical layers. This hypothesis aligns
with the comparison we made between the feedback model
and its counterparts in the main paper’s Sec. 4, especially
Table 4. However, if the loss is connected to each itera-
tion as in our feedback model (Fig. 2-left), the network is
forced to make a prediction at each iteration and the hidden
state will carry the thus-far output per Eq. 4 of the main pa-
per. Therefore, instead of having the leisure to use several
iterations to tackle the task, the network has to tackle the
entire task at every iteration with support from the informa-
tion passed down from the previous iteration, leading to a
proper feedback model.

4. Computational Efficiency
As discussed in the main paper, under proper hardware,

the feedback model has an advantage on speed over feed-
forward. This is because a feedback network is a better fit
for parallelism compared to feedforward due to having a
shallower computation graph.1 In the following paragraphs,
we will discuss the computation graph depth of feedforward
model with depth D and that of feedback model with same
virtual depth (consisting of m temporal iterations and phys-
ical depth n, D = n�m, and Stack-1 configuration).

Feedforward computation has the limitation that repre-
sentation X at depth i is dependent on the previous repre-
sentation at depth i� 1 creating a nested serial process, i.e.

1The number of layers, number of parameters, etc are not proper met-
rics for an algorithm’s run-time.

……

Feed-forward Feedback
X1

X2

X3

XD

X1
1

X2
1X1

2

X1
3 X2

2 X3
1

Xn
m

Figure 3. Computation graph of Feedback vs Feedforward. Xj
i de-

notes the representation at temporal iteration i and physical depth j. Skip
connections are not shown for simplicity.

Temporal Iteration

Ph
ys

ic
al

 D
ep

th

t = 1 t = 4t = 3 t = 5t = 2

Figure 4. Illustration of computation of feedback’s inference pass.
Each node represents a ConvLSTM module. Skip connections are not
shown for simplicity.

Xi depends on Xi−1. In feedback model, representation
Xj

i at temporal iteration i and physical depth j is depen-
dent on two representations: the previous iteration Xj

i−1

(for stacked ConvLSTM, Hd
t = Xd

t , per Eq. 3 of main pa-
per) and the previous depth Xj−1

i :

Xj
i = F(Xj−1

i ;Xj
i−1):

The resulting computation graphs of feedforward and
feedback are shown in Fig. 3; notice that although both
graphs have the same node count, they have different depths
(longest directed path in a graph): feedforward’s depth
is dff = D = nm while feedback network has depth
dfb = n + m � 1. In a proper hardware scenario where
one can do parallel computations to a sufficient extent, in-
ference time can be well measured by the longest distance
from root to target (same as the graph’s depth). An example
of feedback network’s computation can be seen in Fig. 4.
Notice that for our computation, we have max(n; m) par-
allel computations at each time step. Therefore, the total
prediction time of feedforward network is larger than feed-
back network’s since dff = nm > n + m� 1 = dfb.

The run-time for early iteration’s prediction can also be
measured by the longest distance from root to the output at
kth iteration. For feedback network, the distance dfbk =
n + k � 1, but for feedforward network dffk

= nk. We
have dffk

= nk > n + k � 1 = dfbk .
For Stack-i configuration, the computation blocks of

Figure 5.Timed-tSNE plots showing how the representation evolves
through depth/iterations (i.e. how a datapoint moved in representa-
tion space)for each method, on �ve random classes of CIFAR100. The
lighter the hue of the arrow, the earlier the depth/iteration. Feedback's
representation is relatively disentangled throughout, while feedforward's
representation gets disentangled only towards the end. (Best see on screen.
Vector lengths are shown in half to avoid cluttering.)

feedback isi times more complex the above graph depths
becomedfb = (n

i + m � 1) � i = n + mi � i , and feed-
forward is stilldf f = nm. Hence, feedback is still superior
as long asi < n (physical depth).

It is worth noting that the practical run-time of an al-
gorithm depends on various factors, such as implementa-
tion and hardware. The purpose of the above analysis on
computation graph's depth is to exclude the impact of those
factors and quantify the true capacity of each method. The
above derivation is applicable to training time as well, given
proper hardware.

5. Representation in the Feedback Network

This sections provides a discussion on the representa-
tion developed by the feedback network. We use a vari-
ant of tSNE, timed-tSNE, to inspect how the representation
evolves through the network when viewed from the win-
dow of �nal classi�cation results. We also compare acti-
vation maps of feedback and feedforward models demon-
strating that the two models develop signi�cantly different
representations, and therefore, different approaches to solv-
ing the problem though their endpoint numerical results are
similar.

5.1. TimedtSNE

t-Distributed Stochastic Neighbor Embedding (t-SNE)
[6] is a visualization method for embedding high dimen-
sional features in a lower dimensional space. We develop
a variant of this method, calledTimed-tSNE, which illus-
trates how the representation of a network evolves through-
out depth/iterations, when viewed through the window of
class labels. Instead of having one embedding location per
datapoint (which is what original tSNE does), we form a
trajectory for each datapoint by connecting a set of embed-
ding locations. Thekth embedding location in a trajectory
is the tSNE location of the corresponding datapoint using its
representation at depthk while being intialized at its tSNE

location at depthk � 1. For the feedback network, the repre-
sentations come from different iterations (i.e.i embeddings
for a network withi iterations). For feedforward, the repre-
sentations come from difference layers.

Fig. 5 shows the timed-tSNE plot for �ve random classes
of CIFAR100; an animated version that better demonstrates
the trajectories is included in the video. As apparent in
Fig. 5, feedforward's trajectories are more intertwined than
feedback's and only separate different classes at the last it-
erations. In contrast, feedback's timed-tSNE is more sepa-
rated early on while evolving to targeted �ne-grained mar-
gins. This aligns with the hypothesis that feedback network
forms representations in a coarse-to-�ne manner. It also
aligns with the hypothesis for feedforward network that it
forms representations in a low abstract to high abstract man-
ner, which causes its earlier layer representations unsuitable
for making �nal predictions.

5.2. Activations Maps

Fig. 6 provides neuron activations maps in the feed-
back, feedforward, and recurrent feedforward networks (see
Sec. 3 for their distinctions) for a random CIFAR100 query
image. The feedforward model develops the commonly ob-
served edges-based activations in the early layers to sparse
abstract activations in the late layers [8]. On the other hand,
feedback network's activations show signi�cantly dissim-
ilar patterns suggesting a very different representation had
been internally developed to solve the problem in hand. The
activation of the feedback model appear to have a pattern
consistent with a coarse-to-�ne representation, as 1) early
layers seem to have a notion of the object, unlike feed-
forward's early layers, 2) the activations are updated with
rahter �ne-grained changes as opposed to radical updates,
and 3) low-level features, such as edges, are not observed in
any layers. This observation is especially interesting since
the endpoint performance of both feedback and feedfor-
ward models are close, suggesting that the networks took
notably different routes with different properties for solving
the problem, though they landed on the same performance
in terms of endpoint results.

The activations of the recurrent feedforward model ap-
pear to be inbetween the feedforward and feedback mod-
els, suggesting that the weight-sharing mechanism is con-
tributing to making the feedback's activations different from
feedforward's (especially in terms of sparsity). However,
it is apparent that recurrent feedforward's representation is
also quite dissimilar to feedback's (see the edge-based ac-
tivations in the early layers of recurrent feedforward and
dissimilar and blobby activation patterns in the last layers)
suggesting that the different representation of the feedback
network is not entirely owed to the weight-sharing/recurrent
mechanism, and the feedback is playing a role.

